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Abstract

In this paper we prove that if C∗
u(X) is a nuclear uniform Roe alge-

bra associated to a bounded geometry metric space X, then all bounded

derivations on C∗
u(X) are inner.

1 Introduction

Let A be a C∗-algebra. A derivation of A is a linear map δ : A→ A satisfying

δ(ab) = aδ(b) + δ(a)b. In this paper, we always assume that our derivations are

defined on all of A, and are thus bounded by a fundamental result of Sakai [9].

A derivation δ of A is inner if there exists d in the multiplier algebra M(A) of

A such that δ(a) = ad− da for all a ∈ A. Let us say that a C∗-algebra A only

has inner derivations if all (bounded) derivations are inner.

Motivated by the needs of mathematical physics and the study of one-

parameter automorphism groups, it is interesting to study whether all deriva-

tions are inner for a particular C∗-algebra. In the 1970s, a complete solution

to this problem was obtained in the separable case via the work of several au-

thors. The definitive result was obtained by Akemann and Pedersen [1]: they

showed that a separable C∗-algebra has only inner derivations if and only if it

isomorphic to a C∗-algebra of the form

C ⊕
⊕
i∈I

Si, (1)

where C is continuous trace (possibly zero), and each Si is simple (possibly

zero). Thus in particular all separable commutative, and all separable simple,

C∗-algebras only have inner derivations. However, one might reasonably say

that most separable C∗-algebras admit non-inner derivations.
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For non-separable C∗-algebras the picture is murkier. It is well-known that

there are non-separable C∗-algebras, not of the form in line (1), that only have

inner derivations: perhaps most famously, Sakai [10] has shown this for all von

Neumann algebras. See also for example [5, page 123] for some examples that

are not von Neumann algebras, nor of the form in line (1), and that only have

inner derivations.

Our goal in this paper is to give a new class of examples that only have

inner derivations: nuclear uniform Roe algebras. Uniform Roe algebras are a

well-studied class of non-separable C∗-algebras associated to metric spaces: see

Section 2 below for basic definitions. They were originally introduced for index-

theoretic purposes, but are now studied for their own sake as a bridge between

C∗-algebra theory and coarse geometry, as well as having interesting applica-

tions to single operator theory and mathematical physics amongst other things.

Due to the presence of `∞(X) as a diagonal MASA1 they have a somewhat von

Neumann algebraic flavor, but are von Neumann algebras only in the trivial

finite-dimensional case. They are also essentially never of the form in line (1).

Moreover, in many ways they are quite tractable as C∗-algebras, often having

good regularity properties such as nuclearity.

Here is our main theorem.

Theorem 1.1. Nuclear uniform Roe algebras associated to bounded geometry

metric spaces only have inner derivations.

Key ingredients in the proof come from recent groundbreaking work on uni-

form Roe algebras of Braga-Farah [2], Špakula-Tikuisis [13], and Špakula-Zhang

[14].

We leave the following natural questions open.

• Do all uniform Roe algebras only have inner derivations?

• The fact that all derivations on A are inner can be restated as saying

that the first Hochschild cohomology group H1(A,A) vanishes. For A a

(nuclear) uniform Roe algebra, do all the higher groups Hn(A,A) vanish?

See [11] for a survey of this problem in the case that A is a von Neumann

algebra.

1In the sense of Kumjian: see [7].
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2 Definitions and background results

In this section, we recall the definition of uniform Roe algebras. We also recall

two classical results: the geometric characterization of when uniform Roe alge-

bras are nuclear, due to Skandalis, Tu, and Yu; and a classical result of Kadison

saying that all derivations are spatially implemented.

Inner products are linear in the first variable. For a Hilbert space H we

denote the space of bounded operators on H by B(H), and the space of compact

operators by K (H). The commutator of a, b ∈ B(H) is denoted by [a, b] :=

ab− ba.

The Hilbert space of square-summable sequences on a set X is denoted

`2(X), and the canonical basis of `2(X) will be denoted (ϑx)x∈X (we reserve δ

for derivations). For a ∈ B(`2(X)) we define its matrix entries by

axy := 〈aϑx, ϑy〉 .

Definition 2.1 (propagation, uniform Roe algebra). Let X be a metric space

and r ≥ 0. An operator a ∈ B(`2(X)) has propagation at most r if axy = 0

whenever d(x, y) > r for all (x, y) ∈ X ×X. In this case, we write prop(a) ≤ r.
The set of all operators with propagation at most r is denoted Cru [X]. We define

Cu [X] := {a ∈ B(`2(X)) : prop(a) <∞};

it is not difficult to see that this is a ∗-algebra. The uniform Roe algebra, denoted

C∗u(X), is defined to be the norm closure of Cu[X].

Definition 2.2 (ε-R-approximated). Let X be a metric space. Given ε > 0

and r > 0, an operator a ∈ B(`2(X)) can be ε-r-approximated if there exists an

b ∈ Cru [X] such that ‖a− b‖ < ε.

We will exclusively be interested in uniform Roe algebras associated to

bounded geometry metric spaces as in the next definition.

Definition 2.3 (bounded geometry). A metric space X is said to have bounded

geometry if for every r ≥ 0 there exists an Nr ∈ N such that for all x ∈ X, the

ball of radius r about x has at most Nr elements.

We will need the following theorem, which translates nuclearity of C∗u(X)

into a more geometrically useful form. The result is due to Skandalis, Tu, and

Yu: see [12, Theorem 5.3]. See also [3, Theorem 5.5.7] for a proof that does not
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use groupoid theory. We will not need the definition of property A here, just

some consequences of it: see [17, Definition 2.1] for the original definition.

Theorem 2.4. Let X be a bounded geometry metric space. Then C∗u(X) is

nuclear if and only if X has property A.

Finally in this section, we recall a general fact about derivations.

Definition 2.5 (spatial derivation). Let A ⊆ B(H) be a concrete C∗-algebra.

A derivation δ of A is spatial if there is a bounded operator d ∈ B(H) such that

δ(a) = [a, d].

The following is due to Kadison [6, Theorem 4].

Theorem 2.6. Let A ⊆ B(H) be a concrete C∗-algebra. Then every derivation

on A is spatial.

Note that the uniform Roe algebra C∗u(X) always contains the compact op-

erators on `2(X). For a concrete C∗-algebra A ⊆ B(H) containing the compact

operators K (H), there are simpler proofs of Theorem 2.6 available: see for

example [4, Corollary 3.4 and Remark on page 284].

3 Proof of main result

In this section, we start by summarizing facts we need from recent work of

Špakula-Tikuisis, Špakula-Zhang, and Braga-Farah. We then prove Theorem

1.1.

The first main theorem we need is due to Špakula-Zhang [14], building on

ideas of Špakula-Tikuisis [13].

The precise statement below is a straightforward consequence of the equiva-

lence of (i) and (iv) in [14, Theorem 3.3]. For the statement, if f is an element of

`∞(X), we consider f as a bounded operator on `2(X) by multiplication, and for

L > 0 we write Lip(f) ≤ L if for every x, y ∈ X we have |f(x)−f(y)| ≤ Ld(x, y),

i.e. if the Lipschitz constant is at most L. Also, if B is a C∗-algebra, we write

B1 for the closed unit ball {b ∈ B | ‖b‖ ≤ 1}.

Theorem 3.1. Let X be a bounded geometry metric space with property A.

Then an operator a ∈ B(`2(X)) is in C∗u(X) if and only if for any ε > 0 there

exists L > 0 such that whenever f ∈ `∞(X)1 satisfies Lip(f) ≤ L, we have

‖[f, a]‖ ≤ ε.
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The next result is due to Braga and Farah [2, Lemma 4.9]. To state it, let

D := {z ∈ C : |z| ≤ 1} denote the closed unit disk, and for a set I, let DI denote

the usual product space of functions I → D. We write elements of DI as tuples

λ = (λi)i∈I .

Lemma 3.2. Let (X, d) be a metric space with bounded geometry, and let I

be a countable set. Suppose that (ai)i∈I is a family of finite rank operators in

C∗u (X) such that for every λ ∈ DI the series
∑
i∈I λiai converges strongly to an

operator aλ ∈ C∗u (X). Then for every ε > 0 there exists r > 0 such that aλ can

be ε-r-approximated for all λ ∈ DI .

The following basic lemma is essentially folklore: see for example [16, Lemma

8.1] for a proof.

Lemma 3.3. Let X be a metric space with bounded geometry, and for each

r > 0 let Nr be as in Definition 2.3. Then for a ∈ Cru [X] we have

‖a‖ ≤ Nr sup
x,y∈X

|axy| .

The last lemma we need is probably well-known to experts. We are not

aware of the precise statement appearing anywhere in the literature, so provide

a proof.

Lemma 3.4. Let X be a metric space with bounded geometry having property

A, and let m, r, ε > 0. Then there exists s > 0 with the following property. For

all a ∈ C∗u(X) with norm at most m and that is ε-r approximated there exists

b ∈ Csu[X] such that ‖a− b‖ ≤ 3ε, and such that |bxy| ≤ |axy| for all x, y ∈ X.

Proof. Fix r, ε > 0, and let Nr be as in Definition 2.3. Since X has property

A, [15, Theorem 1.2.4, (8)] (see also [15, Definitions 3.2.1] for terminology)

gives s > 0 and a positive type kernel k : X × X → R such that k(x, x) = 1

for all x ∈ X, such that k(x, y) = 0 whenever d(x, y) > s, and such that

|1 − k(x, y)| ≤ ε/((m + ε)Nr) whenever d(x, y) ≤ r. Then using either [8,

Lemma 11.17] or [3, Theorem D.3], there exists a unital completely positive

map

Mk : B(`2(X))→ B(`2(X))

satisfying

(Mka)xy = k(x, y)axy
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for all a ∈ B(`2(X)). Hence in particular, Mk takes image in Csu[X], and

moreover if c ∈ Cru[X], then Lemma 3.3 gives that

‖Mk(c)− c‖ ≤ Nr sup
d(x,y)≤r

|Mk(c)xy − cxy| = Nr sup
d(x,y)≤r

|1− k(x, y)||cxy|

≤ ‖c‖ ε

m+ ε
.

Let now a ∈ C∗u(X) be ε-r approximated, so there exists c ∈ Cru[X] such

that ‖a − c‖ ≤ ε and so in particular ‖c‖ ≤ m + ε. Set b := Mka, so b is in

Csu[X]. Putting the discussion so far together, we have

‖a− b‖ ≤ ‖a− c‖+ ‖c−Mk(c)‖+ ‖Mk(c− a)‖ ≤ 3ε.

Finally, note that for each x, y ∈ X, |k(x, y)| ≤ k(x, x)1/2k(y, y)1/2 by the fact

that k is positive type, and the (proof of the) Cauchy-Schwarz inequality. Hence

for each x, y ∈ X, |k(x, y)| ≤ 1, and so |bxy| = |k(x, y)axy| ≤ |axy|, completing

the proof.

We are now ready for the proof of Theorem 1.1.

Proof of Theorem 1.1. Let δ : C∗u (X) → C∗u (X) be a derivation. Theorem 2.6

implies that δ is spatially implemented, so there is d ∈ B(`2(X)) such that

δ(a) = [a, d] for all a ∈ C∗u(X). To prove Theorem 1.1, we will show that d is

actually in C∗u(X) using Theorem 3.1.

For each x ∈ X, let px be the rank one projection onto the span of the

canonical basis element ϑx. For f ∈ `∞(X)1 (considered as a multiplication

operator on `2(X)), write f as a sum

f =
∑
x∈X

f(x)px

(convergence in the strong operator topology). Then using strong continuity of

subtraction, and separate strong continuity of multiplication on bounded sets,

[f, d] =
[ ∑
x∈X

f(x)px, d
]

=
∑
x∈X

f(x)[px, d].

On the other hand, by assumption that δ is a derivation on C∗u(X), [f, d] is in

C∗u(X) for all f ∈ `∞(X). It follows that if we set I = X and for each x ∈ X we

set ax := [px, d], then the collection (ax)x∈X satisfies the assumptions of Lemma
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3.2. Hence for every ε > 0 there exists r > 0 such that for every f ∈ `∞(X)1,

the operator [f, d] can be (ε/4)-r approximated.

Hence by Lemma 3.4 (with m = 2‖d‖, which is an upper bound for ‖[f, d]‖
for all f ∈ `∞(X)1) there exists s > 0 such that for all f ∈ `∞(X)1 there exists

df ∈ Csu[X] such that
∥∥df − [f, d]

∥∥ ≤ 3ε/4 and such that |dfxy| ≤
∣∣∣[f, d]xy

∣∣∣ for

all x, y ∈ X. Note that for any f ∈ `∞(X)1,

sup
x,y∈X

|dfxy| = sup
d(x,y)≤s

|dfxy| ≤ sup
d(x,y)≤s

|[f, d]xy| = sup
d(x,y)≤s

|f(x)− f(y)||dxy|

≤ Lip(f)s‖d‖.

It follows from Lemma 3.3 that

‖[d, f ]‖ ≤ ‖df − [d, f ]‖+ ‖df‖ ≤ 3ε/4 +NsLip(f)s‖d‖.

for all f ∈ `∞(X)1. Hence if L < ε(4Ns‖d‖s)−1, then whenever Lip(f) ≤ L, we

get ‖[d, f ]‖ < ε. Theorem 3.1 now completes the proof.
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